@ PKI

Consortium

CLOUDFLARE

3 a

Internet

Dr Bas Westerbaan, Cloudflare. Beg arch

PKI Consortium Post-Quantum Cryptography Conference AMS, Nov 7', 2023
e —— o

-

About Cloudflare

We run a spanning 300 cities in over 100
countries.
Started of as a and company, we now

offer many more services, including

, public DNS resolver
, serverless compute
, to protect corporate networks 4,{‘,

We serve nearly and * :@ .. t‘ _ig...

process 46 million HTTP requests per second. ,. ..,

"
.

https://w3techs.com/technologies/overview/proxy/all

Building a better Internet

Cloudflare cares deeply about a , and
Internet, helping design, and adopt, among others:

e Free SSL (2014), TLS 1.3 and QUIC

e DNS-over-HTTPS [T

e Private Relay / OHTTP A -
e Encrypted ClientHello scovre
And, the topic today: 8 | INTERNET

e Migrating to post-quantum @8 1S YOUR

cryptography. R 1 & - é; |

| CLOUDFLARE

This talk

Overview of the current state of migration of the
, and its unique challenges.

Changing the Internet / WebPKl is hard

. Many different users / stakeholders with
varying (performance) constraints and update cycles.

We can’t assume everyone is on fiber, or uses modern CPU, can
store state, or can update at all.

. Despite being designed to be
upgradeable, any flexibility that isn't used in practice, is
probably broken, because of faulty implementations.

TLS 1.3 migration

Early versions of TLS 1.3 were

because of protocol ossification.

After of testing
and adding workarounds, the
final version of TLS 1.3 is a
success, used by over 90% of
our visitors.

- TLS1.2 TLS 1.3 QuIC
6.8% 60.4% 32.8%

90%
80%
70%
60%
50%
40%
30%
20%
10%
o, N

Sat, Oct 21 Sun, Oct 22 Tue, Oct 24 Wed, Oct 25 Fri, Oct 27

https://blog.cloudflare.com/why-tls-1-3-isnt-in-browsers-yet/
https://radar.cloudflare.com/adoption-and-usage

There will be two post-quantum migrations.

Key agreement

Communication can be recorded today and decrypted in
the future. We need to upgrade

' 4
Signatures /
Less urgent: need to be replaced the arrival of
cryptographically-relevant quantum computers.

Key agreement

Urgent, and the easier one.

Feasibility study with Chrome
In 2019 of [e————

CECPQ2

PQ kex with Chrome. Takeaways: -~ cecrazb

Performance of lattice-based KEMs
IS acceptable.

Significant amount of broken clients
because of protocol ossification (split

C/ientHe//O') ' 5’” é ‘?I?S hanjihakezlitsenc;(gn:s) 22‘15 66%8 20611
. . X25519. CECPQ2 is (lattice) and
Google has been working with vendors to cieass (sogenies,broker)

fix issues.

https://blog.cloudflare.com/the-tls-post-quantum-experiment/

Early deployments

Client support for post-quantum key agreement in TLS 1.3

2022 coordinating at IETF, we

0.35 4
(~20% Internet.) 2™
5 0.25
In 2023 Google enabled = 0201
server-side as well.]
Browsers: £ 010-
Chrome. Enabled for 1% of "]

a” traffic. 0.%%23:08-31 2023-|09-15 2023-|09-30 2023-I10-15 2023-|10-30

Date

Firefox. Expected in 2024.

https://blog.cloudflare.com/post-quantum-for-all/
https://datatracker.ietf.org/doc/draft-tls-westerbaan-xyber768d00/
https://datatracker.ietf.org/doc/draft-tls-westerbaan-xyber768d00/

Promising early results

As of writing, no hard failures for further roll-out identified by
Chrome ¢ . Our own testing has shown that there are about a

hundred customers with incompatible origin servers. We're
reaching out to help fix them.

It is likely that we will see
post-quantum key-agreement in 2024.

Key agreement

and the of the two to deploy. We're
on track for ~30% client-side deployment in 2024.

That took 5 years.

Signatures /

Less urgent, but

#1, many more parties involved:

Cryptography library developers, browsers, certificate
authorities, HSM manufacturers, CT logs, and every server
admin that cobbled together a PKI script.

N

#2, there is no all-round great PQ signature

: Size (bytes) CPU time (lower is better)

PQ | Public key Signature Signing Verification
Ed25519 X
RSA-2048 X
Dilithium2
Falcon512
SPHINCS*128s
SPHINCS*128f

Online signing — Falcon’s Achilles’ heel

For fast signing, Falcon requires a (FPU).
We do not have enough experience running cryptography
securely () on the FPU.

On commodity hardware,
, eg.
TLS handshake.

Not a problem for signature verification.

#3, there are many signatures on the Web

Root on intermediate

Intermediate on leaf

Leaf on handshake

Two SCTs for Certificate Transparency
An OCSP staple

Typically 6 signatures
and 2 public keys
when visiting a website,

+17,144 bytes

Using for the TLS handshake and for the rest

+7,959 bytes

Is that ? We had a look...

TLS handshake time (ms)

--=-- 75th percentile !
300 T — median ., /,\.J‘,._/-
-il
250 - e
/"\,'l
~.I"(,'
200 A R g ~
,/.I*'I

150 A
100 A

50 A

0 1 1 1 1 I
0 10 20 30 40 50 60

Dummy data added (kB)

TLS handshake slowdown (%)

120 A

100 A

(0]
o
1

(@)
o
1

F =
o
1

N
o
1

o
1

90th percentile
~.= 75th percentile N
—— median Ni

1 1 1 I 1

10 20 30 40 50
Dummy data added (kB)

blog.cloudflare.com/sizing-up-post-quantum-signatures, 2021

60

https://blog.cloudflare.com/sizing-up-post-quantum-signatures/

And, of course...

Protocol ossification oo+

~
Ul
()

Bump in missing requests
suggests some clients or
middleboxes do not like
certificate chains longer
than and 30kB.

This is problematic for
composite certificates.

Ul Ul (o)) (@) ~
o Ul o (9, o
o o o o o

Confirmed missing live requests
S
un
o

Instead configure servers for

S
o
o

and let TLS
negotiate the one to send.

B

0

1IO ZIO 3‘0 4IO 510
Dummy data added (kB)

60

Not great, not terrible

It probably won't break the Web, but the performance
impact will

NIST signature on-ramp

NIST took notice and
to be submitted.

| will cover these in a break-out presentation tomorrow.

The short of it: there are some very promising submissions, but
their

Thus, we cannot assume that a new post-quantum signature
will solve our issues.

https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/projects/pqc-dig-sig

In the meantime

There are small and larger changes —
possible to the protocols to reduce the number of S|gnatures.

e Leave out intermediate certificates.

o Use key agreement for authentication.

e Overhaul WebPKIl, eg. Merkle Tree Certificates.

| will discuss these in more depth in the break-out tomorrow,

: 4
Signatures /
Less urgent, but path is unclear. Real risk we will start
migrating too late.

That's not all: the Internet isn’t just TLS

There is much more cryptography out there with their own
unique challenges.

with its harder size constraints

Research into post-quantum
eg. anonymous credentials, is in the early stages.

Thank you, questions?

References

e Follow along at the |[ETF

e Check out our blog, eg.:
o 2019TLS experiment with Google
e Sizing-up Post-Quantum Signatures
e Deploying Kyber worldwide

e Reach out; ask-research@cloudflare.com

https://www.ietf.org/mailman/listinfo/Pqc
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://blog.cloudflare.com/sizing-up-post-quantum-signatures/
https://blog.cloudflare.com/post-quantum-for-all/
mailto:ask-research@cloudflare.com

Backup slides

static inline i
fpr rint (fpr x)
{
/*
* We do not want to
constant-time.

*
* Suppose that x >= 0. If x >= 2752, then it
L 2

the nearest

ld a value that wi
h exactly the ri

essing,

0 cases, and

ind out if |x|

rp, rn, m;

eger. Otherwise, if x < 2752, then computing x+2°52 wil

an

integer

do the
e a

€. 2252,

*

If tx >= 2752 or tx
Otherwise, if

is
Otherwise, £

*

rn. We use e

act that when

%

and if x
appropria

*

12 upper bits of tx; if they

n to zero. Otherwise, we clamp tx to zero.

tx >> 52);
& OxFFF) - 2) >> 31);

/x
* Only one of tx, rn or rp (at most) can be non-zero
¥ ‘point.

turn tx | rn | rp;

x is

close to 0 (|x| <= 0.25) then both rp and rn are correct;
s not close to 0, then trunc(x-1.0) yields the

e not all zeros or
then tx >= 2752 or tx < -2"52, and we cla

> both

at this

n and select the proper

This function from Falcon
as submitted to round 3 is
not constant-time on
ARMv7 as claimed.

an you spot the error?

TLS 1.3 handshake
] o

Client Server Client

Server

ClientHello ClientHello
Supported

Supported
T———_ - AEADs ———

« AEADs
« Signature algorithms « Signature algorithms
« Key agreements

» Key agreements

Client Keyshare(s) \ Client Keyshare(s) \

ServerHello /
« Chosen AEAD T

« Server Keyshare G HelloRetryRequest

/ * Chosen key agreement
«— Certificate chain
& signature
Handshake MAC ClientHello
Supported
a T~ - AEADs

« Signature algorithms
» Key agreements

oY Client Keyshare \

Handshake MAC
Application Data

B \ ServerHello o

« Chosen AEAD
« Server Kevshare

KEM versus Diffie-Hellman

Key Encapsulation Mechanism (KEM)

Client Server
|
Generate keypair P
for Private key —
and Public key Public key
QL
Encapsulate (Public key)
to get Shared key, Ciphertext

w0

Ciphertext

Decapsulate

(Ciphertext, Private key)
toget Shared key

O, * &— ApplicationData —> O

Encrypted with
Shared key

Diffie-Hellman (DH)

Client Server
|
Generate keypair (o
for Privat.e key 1 ~ : Generate keypair
and Public key 1 Publickey1__ for private key 2

and Public key 2

Combine (Public key 1,
Private Key 2)
to get Shared key

&
['¥e) »
—
Public key 2

Combine
(Public key 2, Private key 1)
toget Shared key

O, © &— ApplicationData —> C

Encrypted with
Shared key

@ PKI

Consortium

	Slide 253
	Slide 253

